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Abstract 

Ewing sarcoma is a pediatric cancer that is found most commonly in the bone but also in 

soft tissues. Though rare, it is the second most common bone cancer in children, affecting 

approximately 200 children annually. Patients are typically treated with multimodality 

chemotherapy, surgery, and radiation. Although these treatments can result in cure, roughly 30% 

of diagnosed patients do not survive6. Emerging studies have attempted to find links between 

EWS-FLI1; an oncogene which encodes for an aberrant transcription factor that helps drive 

tumorigenesis in Ewing sarcoma, and apoptosis / cell cycle regulation13. However, the 

mechanism behind this regulation is still poorly understood. We intended to create a quantitative 

apoptotic index using TUNEL assays in order to validate the link between EWS-FLI1 and 

apoptosis, but also prepare for further studies on potential genes that interact with EWS-FLI1 to 

bypass apoptosis and cause cell proliferation. An experimental setup was designed in which 

embryos were injected with CMV:EWS-FLI1-GFP and CMV:GFP as a control. After injections, 

embryos were fixed and stained using TUNEL. This study found a 4-fold increase in the average 

number of apoptotic cells per unit area for 48 hour old embryos while also indicating zero 

change in mean apoptotic cells per unit area for 24 hour old embryos. A second experiment was 

then designed in order to confirm the preliminary results obtained from the first experiment. The 

second study focused only on 48 hour old embryos and found that there is a 3-fold increase in 

mean apoptotic cells per unit area for 48 hour old embryos.  
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Introduction 

Ewing sarcoma arises when a chromosomal translocation occurs between the amino-

terminal domain of the EWS gene from chromosome 22 and a number of possible DNA-binding 

transcription factors that are part of the ETS family of transcription factors. Most commonly, this 

fusion takes place with the FLI1 gene as shown in figure 110.  It is shown that this fusion is 

required for tumorigenesis12, however this fusion alone is not sufficient to drive tumorigenesis11. 

There are not many known secondary events that help to drive tumorigenesis. Recent studies 

suggest that a potential mechanism for Ewing sarcoma tumorigenesis lies within its ability to 

bypass cell cycle checkpoints and apoptosis3. 

 

Figure 1. Percent chance of fusion between EWS and members of the ETS family of transcription factors (Monument et al 2012). 

The cause of Ewing sarcoma is unclear. It has been shown that it is not a hereditable 

disease and no environmental exposure has been linked to the disease. New research in Ewing 

sarcoma aims to target the disease at the genetic and cellular level.  
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Zebrafish model for Ewing sarcoma 

Zebrafish serve as an ideal model for studying the genetics of various cancers like Ewing 

sarcoma. Because zebrafish are vertebrates, they share a high degree of sequence and functional 

homology with humans. Moreover, any genetic mutation or human manipulations are easier to 

see due to their embryos being transparent. Also, zebrafish can produce progeny weekly and can 

lay 100-200 embryos at one given time. Zebrafish tumor susceptibility is comparable to that of 

humans. This makes Zebrafish an excellent candidate for studying Ewing sarcoma. Establishing 

an animal model of Ewing sarcoma is difficult due to the fact that many times cells will silence 

the gene and undergo apoptosis rather than constitutively expressing the EWS-FLI1 gene. 

Human Ewing sarcoma is characterized as a small round blue cell tumor. This histology is 

similar to that of zebrafish Ewing sarcoma9. 

 

Figure 2. Gross (a) and microscopic (b) histology of tumor arising in mosaic EWS-FLI1 transgenic fish. From Leacock et al 2012 

Generating transgenic fish using the Tol2 transposon system 

Previous methods for creating transgenic zebrafish required the use of plasmid DNA and 

pseudo-typed retrovirus’s8. The use of Plasmid DNA, which was injected into fertilized embryos, 

was effective in integrating green fluorescent protein (GFP) into certain tissues and organs; 

however, this method was mostly ineffective in producing transgenic fish that were able to 

produce transgenic offspring as only 5% of injected fish were able to produce transgenic 
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offspring7. On the other hand, injecting a pseudo-typed retrovirus into blastula stage embryos 

allows for the chromosomal integration of the virus’s complementary DNA. This method can 

yield up to 100% transgenic germ line transmitting founder fish and therefore a larger number of 

transgenic offspring4. Although transgenic offspring yield is high, using a pseudo-typed 

retrovirus is very laborious and therefore, makes it difficult to produce a stable transgenic line8. 

In order to overcome the limitations of previous methods, the Tol2 transposon system was 

developed. This system allows for the integration of genetic constructs into genomic DNA in 

which transgenic fish can yield large amounts of transgenic offspring (50-70%) in larger 

frequencies as compared to previous methods8. The Tol2 transposon is roughly 4.7 kilobases 

(kb) in length with a gene encoding for a transposase gene, which consists of four exons. Figure 

3 shows the structure of a Tol2 transposable element with the Tol2 vector8. The RNA transcribed 

by the Tol2 which encodes for the transposase protein is shown at the top of the illustration by 

solid lines (exons) and dotted lines (introns)8. The final mRNA construct which encodes for the 

transposase protein causes transposition through a cut-and-paste mechanism. This mechanism 

causes 8bp repeats at the target site; however, it does not cause any rearrangements or other 

modifications8.  

 

Figure 3. Structure of the Tol2 transposable element with the Tol2 vector. From Kawakami et al., 2007.  

The Tol2 transposon system has been shown to be active in all vertebrate cells that have been 

tested thus far7.  Generating transgenic zebrafish using the Tol2 system requires the use of 
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plasmid DNA. First, a transposon donor plasmid is co-injected with the mRNA encoding for the 

transposase. After the transposase protein is translated and folded, the transposase construct is 

excised and is allowed to fully integrate itself into the genome7. 

 

Figure 4. Tol2 transposon system as a way to integrate plasmid DNA into genomic DNA (Kawakami et al., 2004). 

EWS-FLI1 expression in zebrafish embryos 

 The expression of EWS-FLI1 in zebrafish embryos relys on the promotor attached to it. 

In the experiments discussed in this paper, the cytomegalovirus (CMV) promoter was used due 

to its high expression in muscle cells. This expression can be visualized with the attachement of 

GFP to the construct of interest. Once EWS-FLI1 is integrated and expressed, the embryo begins 

to change morphologically depending on the level of expression. High levels of EWS-FLI1 



Gilerman - 7 
 

expression results in a high degree of morphological deformity as shown in figure 5. This 

deformity may be due to the organism undergoing apoptosis at higher rates than normal. 

Although it is clear that EWS-FLI1 induces a morphological change, It is difficult to 

establish a morphological apoptotic index because it is shown that an organism can undergo 25% 

tissue regression per day while only having 2-3% of its cells  undergo apoptosis1. Because of 

this, it is important to establish a quantifiable method in which apoptotic cells can be better 

detected. 

  

Figure 5. Various levels of EWS-FLI1 and GFP (control) expression at 24hpf & 48hpf at 5ng/ul DNA, 10ng/ul transposase 

TUNEL Assay 

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) is an assay for 

locating DNA fragments in situ after they have undergone apoptosis.  This assay is template 

independent and relies on the identification of blunt ends of double stranded DNA breaks by the 
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enzyme terminal deoxynucleotidyl transferase (TdT)5. TdT catalyzes the addition of labeled 

dUTP’s onto the 3’OH terminus of DNA strands3. These nucleotides form an oligomer 

composed of digoxigenin, which then allows for the addition of an anti-digoxigenin conjugate 

antibody10. This antibody contains a rhodamine fluorochrome which stains bright red. 

  

Figure 6. Visual representation of how a TUNEL assay works.  TdT adds Dig-labeled dUTP onto 3’OH ends. Dig specific antibody with 

rhodamine fluorochrome attaches itself onto Dig. 
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Experimental Methods – A 

Injections and TUNEL stain preparation 

 Two injection mixes were prepared at 10ng/µl for both CMV:EWS-FLI1-eGFP and 

CMV:eGFP. These two mixes were injected into fertilized zebrafish embryos within 45 minutes 

to an hour after being laid. Following injections, each petri dish was placed inside an incubator at 

29-30 degrees centigrade. At 24 hours post injection, embryos were screened for GFP and then 

subsequently fixed overnight in 4% paraformaldehyde (PFA)/1X phosphate buffered saline 

(PBS). The next day, these embryos were prepared for TUNEL staining by further fixation in 

methanol at -20 degrees centigrade followed by rehydration with 3:1, 1:1, and 1:3 solutions of 

Methanol/PBS. After two washes in 1X phosphate buffered saline with Triton X-100 (PBST) for 

5 minutes each wash, the embryos were digested by proteinase K in PBST (10µl/ml) for two 

minutes and then two subsequent washes with PBST were done. Further fixation in 4% PFA/1X 

PBS was performed for 20 minutes followed by two washes in PBST. Another fixation in 2:1 

ethanol/acetic acid was then carried out for 10 minutes at -20 degree centigrade. After three 

rounds of washes in PBST, embryos were incubated in an equilibration buffer for one hour at 

room temperature. Lastly, a mixture of 70% reaction buffer - containing modified digoxigenin 

labeled dUTP’s, with 30% terminal deoxynucleotidyl transferase (TdT) - was prepared and 

added to fixed and equilibrated embryos. These embryos were incubated in a water bath at 37 

degrees centigrade overnight. The same steps were performed for the injected 48 hour-old 

embryos. 
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Preparing embryos for GFP staining 

  After embryos are fixed and prepared for TUNEL staining, any previous GFP that was 

visible using fluorescence microscopy become undetectable. To compensate for this loss, green 

fluorescent antibodies were used to localize GFP presence.  Following the fixing and preparation 

for staining, a stop/wash buffer was added for 1 hour at room temperature. Next, a block was 

performed using 1% bovine serum albumin (BSA) for 30 minutes. Lastly, a 1:200 dilution of 

rabbit anti-GFP/1% BSA was prepared and added to the embryos. Embryos were then placed on 

top of a rocker in 4 degrees centigrade overnight. 

TUNEL and GFP stain 

 After adding the primary antibody for GFP as well as the modified digoxigenin dUTP’s 

for the TUNEL stain, a mixture containing 52% blocking solution, 47% Anti-digoxigenin 

conjugate, and 1% AlexaFluor 488 goat anti-rabbit IgG was prepared. Embryos were incubated 

in the solution for 4 hours at room temperature in the dark. Following incubation, embryos were 

washed three times in PBST for five minutes each time. Embryos were stored in PBST in a 4-

degree centigrade refrigerator. 

Quantifying the TUNEL stain 

 Attempting to obtain quantifiable results from whole-imaged embryos after TUNEL 

staining is difficult due to the large circular yolk sack located in the middle of the embryos body 

which causes the images to be blurred and unquantifiable. In order to succeed in dealing with 

this issue, each embryo’s tail was cut so that the yolk sack was not involved in the data as shown 

in figure 7. Next, each tail was imaged using fluorescent microscopy. Following imaging, each 

tail was measured for its area in pixels using ImageJ software. In order to normalize the data, a 
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unit area in pixels was determined by using the smallest tail in each separate group (24 and 48 

hours) to represent the unit area. The unit area for the 24 hour old embryos was 71763 pixels and 

87861 pixels for the 48 hour old embryos. Next, each tail was individually counted three times, 

and an average for TUNEL positive cells was determined for each separate tail. All of the 

averages obtained for each tail were then added and a new average for each data set was 

determined. Finally, a two-tailed T test was done in order to determine statistical significance. 

 

Figure 7. Zebrafish embryo tail post TUNEL assay. Bright-field (left) and TUNEL positive (red) / EWS-FLI1 positive (green) (right). 
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Results – A 

 

 

Figure 8. Average number of TUNEL positive cells 24 hours post fertilization did not increase when compared to the control  

 

 

 

Figure 9. Average number of TUNEL positive cells 48 hours post fertilization drastically increased (4 fold) when compared to the  

control. 
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Discussion - A 

Based off the results shown in figures 7 and 8, the average number of apoptotic cells does 

not change for 24 hour old embryos while significantly increasing (4 fold) for 48 hour old 

embryos. The reason there is no increase in apoptosis at 24 hours post fertilization could be due 

to the fact that approximately 70-80% of the 24 hour old embryos died before reaching 24 hours. 

This means that the TUNEL assay was performed on embryos that had less severe morphological 

deformity. Also, a high mortality rate made it difficult to obtain a large sample for each data set.  

Another possible reason for the lack of difference in apoptotic cells for 24 hour old embryos 

could be due to the timing mechanisms required for inducing apoptosis. Considering that 

embryonic transcription in zebrafish does not start until the 1000 cell stage, which is roughly 4-6 

hours post fertilization2, the amount of time it takes for EWS-FLI1-GFP to be transcribed, 

translated, folded, and finally induce apoptosis could take longer than 24 hours.  Another 

limitation of this experiment was the GFP staining. Most embryos displayed small green dots 

scattered all throughout the tail in a manner that was inconsistent with previous GFP expression. 

This could be due to nonspecific binding of the primary antibody. The drastic increase in 

apoptosis for 48 hour old embryos indicates that EWS-FLI1 does induce more apoptosis than the 

GFP control. However, the 4-fold increase in apoptosis may have been skewed by one outlier 

that had 210 TUNEL positive cells.  Due to the limitations presented by this experiment, another 

study must be conducted in order to validate and to be able to better quantify the results obtained 

from this experiment. 
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Experimental Methods – B 

Changes made from Experimental Methods – A 

 In order to test the preliminary results obtained from figures 7 and 8, another experiment 

was designed with the following changes made from the first experiment: 

 Only 48 hour old embryos were tested 

 The concentration of the injection mix was lowered to 5ng/µl for both CMV:eGFP-EWS-

FLI1 and CMV:eGFP 

 Dilution of rabbit anti-GFP/1% BSA was increased from 1:200 to 1:500 

 Unit area used for normalizing the data: 142714 pixels 

All other aspects of this experiment remained constant with the previous study. 

The method behind this experiment can be summarized by the flowchart shown below: 

Embryos injected with CMV:eGFP-EWS-FLI1 and CMV:eGFP 

 

At 24 hours post fertilization                   Screen for GFP+ Embryos 

 

At 48 hours post fertilization                Fix GFP+ embryos overnight in 4% PFA / 1X PBS 

 

Day 1: Fix and Permeabilize                      TUNEL Assay 

Day 2: Prepare for GFP stain 

Day 3: TUNEL and GFP Stain 

    Tail Cut / Image Embryos / Score Embryos 
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Results – B 

 

 

 

Figure 10. Average number of TUNEL positive cells 48 hours post fertilization increased (3 fold) when compared to the control. 
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Discussion - B  

The results obtained from the follow up experiment confirmed the preliminary results 

obtained from figure 8. In this experiment, only 48 hour old embryos were used because the 

preliminary results suggested no change in 24 hour old embryos. Also, studying only one time 

point allowed for a larger sample size to be collected. Lowering the injection mix concentration 

from 10ng/µl to 5ng/µl lowered mortality rate from 70-80% to 40-50% while also decreasing the 

average number of EWS-FLI1 TUNEL positive cells from 77 to 31. This indicates a direct 

correlation between the amount of EWS-FLI1 injected and the number of TUNEL positive cells. 

Increasing the primary antibody dilution for GFP from 1:200 to 1:500 decreased the amount of 

nonspecific antibody binding; however, the GFP stain still did not accurately represent previous 

GFP expression. Further studies will need to be conducted in order to attempt to localize GFP 

expression.  
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Conclusion 

 The experiments conducted and discussed in this paper aimed to understand if EWS-FLI1 

induces apoptosis more than the control.  Based off the findings obtained from both experiments, 

it can be concluded that EWS-FLI1 induces 3-4 times the normal amount of apoptosis. The 

significance of these results suggest that one potential mechanism in which Ewing sarcoma is 

able to proliferate could be through bypassing cell cycle checkpoints which would lead to a 

decrease in the number of apoptotic cells. However, more research will need to be conducted in 

order to validate this claim. The results also establish a baseline for any future experiments in 

which the amount of apoptotic cells are compared between EWS-FLI1 and potential candidate 

genes that may aid or hinder EWS-FLI1 in cell proliferation / tumorigenesis.  
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